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Abstract 

Developing a Bayer precipitation circuit model with accurate predictive capability requires 

comprehensive physical models for the fundamental processes occurring and, importantly, a 

structured approach to tuning the model to available plant data. A new agglomeration size kernel 

has been constructed based on agglomeration kernels developed by René David et al. for different 

types of eddies within turbulence. The new kernel takes account of the fact that two types of 

eddies are of practical relevance to agglomeration in precipitation circuits, namely small laminar 

eddies whose behaviour is dominated by viscous forces and larger eddies whose behaviour is 

dominated by inertial forces. As well as simulating the chemical and physical processes 

underlying agglomeration, the kernel offers flexibility in its application due to the inclusion of 

various adjustable parameters. This facilitates model calibration for accurate prediction of particle 

size distribution (PSD) in the discharge flows from tanks in the precipitation circuit where 

complex particle interactions take place under a variety of hydrodynamic conditions. The kernel 

has been implemented into the Precipitator 3 unit model of the SysCAD process simulation 

software. A systematic procedure for calibration has been developed for obtaining the closest 

approach to the target PSD whereby various combinations of kernel parameters are tested with 

simultaneous tuning of constants for growth, nucleation, and agglomeration rates on their 

respective targets. Aspects of supersaturation, growth rate, nucleation rate and agglomeration rate 

are reviewed in the context of calibrating predictive established relationships. 
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1. Introduction

Product quality and production rate are ongoing concerns in alumina refineries. Uncertainties 

often arise about the best way to resolve product quality issues with the least impact on production 

or how to optimise plans for production improvements. In these cases it is useful to have a tool 

which can predict changes in particle size distribution (PSD) around the white-side circuit as a 

consequence of changes in operating parameters, circuit configuration or equipment conditions. 

Recently a new agglomeration size kernel has been added to the SysCAD process simulation 

software. The kernel offers a large degree of flexibility in calibrating a precipitation circuit model 

to an existing plant circuit such that each tank in the model has the right set of parameters 

producing the correct gibbsite mass with the correct PSD. This paper discusses this new kernel 

and the method of calibration. In this context, attention is also paid to fundamental aspects of 

growth rate, nucleation rate and agglomeration rate. 

Agglomeration of Al(OH)3 (gibbsite or hydrate) crystals in the Bayer process has been extensively 

studied in Australian research institutions. In the early 2000 s a collaborative research project was 

executed within CSIRO Minerals under the direction of AMIRA. Dean Ilievski and Iztok Livk 

were the leading scientists on this project and published important results, conclusions and 

correlations, including an agglomeration kernel that is available in SysCAD. Their experimental 
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work was conducted in two types of reactors: an in-house developed reactor for simulating 

laminar flow conditions and another for simulating turbulent flow conditions [1]. Regarding the 

latter it was recognised that the agitator power input, thus shear rate, per reactor volume unit was 

an order of magnitude greater than in real-world precipitators. To overcome this issue, the 

conclusions from both the laminar and turbulent reactors were considered in constructing an 

agglomeration kernel.  
 

In this paper a more pragmatic approach is presented whereby the actual precipitators in a plant 

serve as kernel parameter development reactors. In this approach, scientific findings regarding 

agglomeration under laminar and turbulent flow conditions are used, but a degree of flexibility 

has been incorporated into the kernel to account for the actual plant environment. 
 

2. New Agglomeration Kernel 
 

2.1 Microscales of Turbulence 
 

The new kernel is based on expressions from publications by René David et al. [2, 3, 4] about 

their research into the agglomeration of adipic acid crystals. These expressions relate to the 

hydrodynamic and orthokinetic conditions within the turbulence in a tank, where different types 

of eddies can be distinguished. Turbulent energy is added at the largest length scales. The vortices 

or eddies created are distorted and broken into continually smaller eddies. Of interest here are 

eddies at the smaller scales, where agitator energy input is ultimately dissipated as heat via viscous 

action. The Taylor microscale, g, is the scale at which viscous effects start to become important, 

while turbulent inertia through flow fluctuations in magnitude and direction is still present. Below 

the Kolmogorov microscale, λk [5], viscous effects dominate and motion is laminar.  
 

𝜆𝑘 = (
𝜈3

𝜀
)

1
4⁄         (1) 

 

𝜆𝑔 = 𝜃 ∙ (
60𝜈

𝜀
)

1
2⁄        (2) 

where: 

𝜆𝑘 Kolmogorov microscale of turbulence, m 

𝜆𝑔 Taylor scale of turbulence, m 

𝜈 Kinematic viscosity, m2 s-1 

𝜀 Energy dissipation rate per unit mass, J s-1 kg-1 

𝜃 Fluctuating average component of the local velocity, m s-1 
 

The Taylor and Kolmogorov microscales are typically within the hydrate particle size range of 

Bayer circuit precipitators. These scales can vary from tank to tank and from location to location 

within a tank. It is worth noting that turbulence is a characteristic of the flow situation, not a 

property of the fluid, and that these scales are not exact dimensions but representative dimensions. 
 

2.2 The Process of Agglomeration 

 

The Kolmogorov microscale is an important transition point for particle behaviour. The motion 

of particles smaller than the Kolmogorov microscale is dominated by viscous forces. These 

particles have little motion relative to the fluid. They tend to move parallel to each other in the 

laminar flow elements. Collisions between these small particles only occur because particles catch 

up with each other as a result of a viscosity related, shear induced velocity gradient. The chance 

of collision as a function of particle size is described by Smoluchovski [6]. Particles larger than 

the Kolmogorov microscale tend to follow more diverse individual flow patterns and exhibit 

varied velocity fluctuations and trajectory changes. They have a much greater chance of being 

involved in collisions, e.g. with each other, or with the smaller particles crossing their path. 
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